Páginas
sexta-feira, 17 de abril de 2020
Geometria – O icosaedro truncado
3 comentários:
Regras para postar comentários:
I. Os comentários devem se ater ao assunto do post, preferencialmente. Pense duas vezes antes de publicar um comentário fora do contexto.
II. Os comentários devem ser relevantes, isto é, devem acrescentar informação útil ao post ou ao debate em questão.
III. Os comentários devem ser sempre respeitosos. É terminantemente proibido debochar, ofender, insultar e/ou caluniar quaisquer pessoas e instituições.
IV. Os nomes dos clubes devem ser escritos sempre da maneira correta. Não serão tolerados apelidos pejorativos para as instituições, sejam quais forem.
V. Não é permitido pedir ou publicar números de telefone/Whatsapp, e-mails, redes sociais, etc.
VI. Respeitem a nossa bela Língua Portuguesa, e evitem escrever em CAIXA ALTA.
Os comentários que não respeitem as regras acima poderão ser excluídos ou não, a critério dos moderadores do blog.
To find the number of edges, we find the total number of sides represented by all the faces and divide by 2 (since two faces meet at each edge):
ResponderExcluirE = (20 * 6 + 12 * 5)/2 = 180/2 = 90
So, a truncated icosahedron has 90 edges.
To find the number of vertices, we shall use Euler's formula, which states that for any polyhedron, F + V = E + 2, where F is the number of faces, V is the number of vertices, and E is the number of edges. We just showed that a truncated icosahedron has 90 edges, and since it has 12 hexagons and 20 pentagons, it has 32 faces. So, we find the number of vertices by substituting these values into Euler's formula:
32 + V = 90 + 2
32 + V = 92
V = 60
So a truncated icosahedron has 60 vertices.
My answer: 90 edges and 60 vertices
Well done, Jake!!
ExcluirHere's another way of seeing it: in the truncated icosahedron, every pentagonal face is surrounded by 5 hexagonal faces, and every hexagonal face is surrounded by 3 pentagonal faces and 3 other hexagonal faces. This means that all of the vertices are vertices of pentagonal faces.
So, in order to count the total number of vertices, we just need to count the number of vertices of the pentagonal faces: 12*5 = 60.
In order to count the number of edges, we note that there are two kinds of edges:
- edges that are sides of pentagons: 12*5 = 60;
- edges that connect two pentagons: 12*5/2 = 30.
That makes a total of 90 edges. :)
An amazing fact about the truncated icosahedron: it exists in nature! There is a molecule with this exact shape, with 60 atoms of carbon, one in each of the vertices. :)
ResponderExcluir